Embryonic neurons of the developing optic chiasm express L1 and CD44, cell surface molecules with opposing effects on retinal axon growth.

نویسندگان

  • D W Sretavan
  • L Feng
  • E Puré
  • L F Reichardt
چکیده

The first retinal ganglion cell axons arriving at the embryonic mouse ventral diencephalon encounter an inverted V-shaped neuronal array defining the midline and posterior boundaries of the future optic chiasm. These neurons express L1, an immunoglobulin superfamily molecule known to promote retinal axon outgrowth, and CD44, a cell surface molecule that we find inhibits embryonic retinal axon growth in vitro. Incoming retinal axons do not penetrate this L1/CD44 neuron array, but turn to establish the characteristic X-shaped optic chiasm along the anterior border of this array. These results suggest that L1/CD44 neurons may serve as an anatomical template for retinal axon pathways at the embryonic mouse ventral diencephalon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43.

Pathfinding mechanisms underlying retinal ganglion cell (RGC) axon growth from the optic chiasm into the optic tract are unknown. Previous work has shown that mouse embryos deficient in GAP-43 have an enlarged optic chiasm within which RGC axons were reportedly stalled. Here we have found that the enlarged chiasm of GAP-43 null mouse embryos appears subsequent to a failure of the earliest RGC a...

متن کامل

Domains of regulatory gene expression and the developing optic chiasm: correspondence with retinal axon paths and candidate signaling cells.

In mammals, some axons from each retina cross at the optic chiasm, whereas others do not. Although several loci have been identified within the chiasmatic region that appear to provide guidance cues to the retinal axons, the underlying molecular mechanisms that regulate this process are poorly understood. Here we investigate whether the earliest retinal axon trajectories and a cellular populati...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro

Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic d...

متن کامل

Axon-regenerating retinal ganglion cells in adult rats synthesize the cell adhesion molecule L1 but not TAG-1 or SC-1.

Retinal ganglion cells (RGCs) in rats regenerate axons in the presence of a PNS nerve graft. To determine if axon-regenerating RGCs synthesize cell adhesion/recognition molecules which they possessed during development, retinae were subjected to in situ hybridization with antisense cRNA probes of L1, TAG-1, and SC-1 (and GAP-43 for comparison). L1 and TAG-1 (and GAP-43) proteins on axons were d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 1994